Evolution of Enterohemorrhagic Escherichia coli O26 Based on Single-Nucleotide Polymorphisms
نویسندگان
چکیده
Enterohemorrhagic Escherichia coli (EHEC) O26:H11/H⁻ is the predominant non-O157 EHEC serotype among patients with diarrhea, bloody diarrhea, and hemolytic uremic syndrome (HUS) worldwide. To elucidate their phylogeny and association between their phylogenetic background and clinical outcome of the infection, we investigated 120 EHEC O26:H11/H⁻ strains isolated between 1965 and 2012 from asymptomatic carriers and patients with diarrhea or HUS. Whole-genome shotgun sequencing (WGS) was applied to ten representative EHEC O26 isolates to determine single nucleotide polymorphism (SNP) localizations within a predefined set of core genes. A multiplex SNP assay, comprising a randomly distributed subset of 48 SNPs, was established to detect SNPs in 110 additional EHEC O26 strains. Within approximately 1 Mb of core genes, WGS resulted in 476 high-quality bi-allelic SNP localizations. Forty-eight of these were subsequently investigated in 110 EHEC O26 and four different SNP clonal complexes (SNP-CC) were identified. SNP-CC2 was significantly associated with the development of HUS. Within the subsequently established evolutionary model of EHEC O26, we dated the emergence of human EHEC O26 to approximately 19,700 years ago and demonstrated a recent evolution within humans into the 4 SNP-CCs over the past 1,650 years. WGS and subsequent SNP typing enabled us to gain new insights into the evolution of EHEC O26 suggesting a common theme in this EHEC group with analogies to EHEC O157. In addition, the SNP-CC analysis may help to assess a risk in infected individuals for the progression to HUS and to implement more specific infection control measures.
منابع مشابه
Targeted Amplicon Sequencing for Single-Nucleotide-Polymorphism Genotyping of Attaching and Effacing Escherichia coli O26:H11 Cattle Strains via a High-Throughput Library Preparation Technique
Enterohemorrhagic Escherichia coli (EHEC) O26:H11, a serotype within Shiga toxin-producing E. coli (STEC) that causes severe human disease, has been considered to have evolved from attaching and effacing E. coli (AEEC) O26:H11 through the acquisition of a Shiga toxin-encoding gene. Targeted amplicon sequencing using next-generation sequencing technology of 48 phylogenetically informative single...
متن کاملMolecular profiling and phenotype analysis of Escherichia coli O26:H11 and O26:NM: secular and geographic consistency of enterohemorrhagic and enteropathogenic isolates.
Fifty-eight enterohemorrhagic Escherichia coli O26:H11 or O26:NM (nonmotile) strains and 44 atypical enteropathogenic E. coli O26:H11 or O26:NM strains isolated from patients in 11 countries during 52 years share a common pool of non-stx virulence genes, fitness loci, and genotypic and phenotypic diagnostic markers. These findings indicate close relatedness between these pathotypes and provide ...
متن کاملIdentification of Intermediate in Evolutionary Model of Enterohemorrhagic Escherichia coli O157
Highly pathogenic enterohemorrhagic Escherichia coli (EHEC) O157 cause a spectrum of clinical signs that include diarrhea, bloody diarrhea, and hemolytic uremic syndrome. The current evolutionary model of EHEC O157:H7/H(-) consists of a stepwise evolution scenario proceeding from O55:H7 to a node (hypothetical intermediate) that then branches into sorbitol-fermenting (SF) O157:H(-) and non-SF (...
متن کاملAdherence of enterohemorrhagic Escherichia coli O157, O26, and O111 strains to bovine intestinal explants ex vivo.
We used bovine intestinal organ culture to study infection by enterohemorrhagic Escherichia coli serogroups O157, O26, and O111. We show colonization and attaching and effacing lesion formation on explants derived from the ileum, colon, and rectum. Intimin and Tir were detected at the sites of adherent bacteria; Tir was essential for colonization.
متن کاملShiga toxin gene loss and transfer in vitro and in vivo during enterohemorrhagic Escherichia coli O26 infection in humans.
Escherichia coli serogroup O26 consists of enterohemorrhagic E. coli (EHEC) and atypical enteropathogenic E. coli (aEPEC). The former produces Shiga toxins (Stx), major determinants of EHEC pathogenicity, encoded by bacteriophages; the latter is Stx negative. We have isolated EHEC O26 from patient stools early in illness and aEPEC O26 from stools later in illness, and vice versa. Intrapatient E...
متن کامل